Register machine proof of the theorem on exponential diophantine representation of enumerable sets

Author:

Jones J. P.,Matijasevič Y. V.

Abstract

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference38 articles.

1. An Informal Arithmetical Approach to Computability and Computation

2. A new proof of the theorem on exponential diophantine representation of enumerable sets;Matijasevič;Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V.A. Steklova (LOMI) Akademii Nauk SSSR,1976

3. The existence of noneffectizable estimates in the theory of exponential diophantine equations;Matijasevič;Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V.A. Steklova (LOMI) Akademii Nauk SSSR,1974

4. Diophantine sets;Matijasevič;Uspehi Matematičeskih Nauk,1972

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Existential Arithmetics with Addition and Bitwise Minimum;Lecture Notes in Computer Science;2023

2. Hilbert's Tenth Problem in Coq (Extended Version);Logical Methods in Computer Science;2022-03-01

3. On Some Algebraic Ways to Calculate Zeros of the Riemann Zeta Function;Algebraic Informatics;2022

4. THE QUEST FOR DIOPHANTINE FINITE-FOLD-NESS;MATEMATICHE;2021

5. Further results on Hilbert’s Tenth Problem;Science China Mathematics;2020-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3