On the Existential Arithmetics with Addition and Bitwise Minimum

Author:

Starchak Mikhail R.ORCID

Abstract

AbstractThis paper presents a similar approach for existential first-order characterizations of the languages recognizable by finite automata, by Parikh automata, and by multi-counter machines over the alphabet $$\left\{ 0,1,...,k-1\right\} ^{n}$$ 0 , 1 , . . . , k - 1 n for some $$k\ge 2$$ k 2 . The set of k-FA-recognizable relations coincides with the set of relations, which are existentially definable in the structure "Image missing" , where "Image missing" corresponds to the bitwise minimum of base k. In order to obtain an existential first-order description of k-Parikh automata languages, we extend this structure with the predicate $$ EqNZB _{k}(x,y)$$ E q N Z B k ( x , y ) which is true if and only if x and y have the same number of non-zero bits in k-ary encoding. Using essentially the same ideas, we encode computations of k-multi-counter machines and thus show that every recursively enumerable relation over the natural numbers is existentially definable in the aforementioned structure supplemented with concatenation $$z=x\smallfrown _{k} y\rightleftharpoons z = x + k^{l_{k}(x)}y$$ z = x k y z = x + k l k ( x ) y , where $$l_{k}(x)$$ l k ( x ) is the bit-length of x in base k. This result gives us another proof of DPR-theorem.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3