Optimizing PID Gains of a Vehicle using the state-of-the-art Metaheuristic Methods

Author:

AFŞAR Mustafa Atakan1ORCID,ARSLAN Hilal1ORCID

Affiliation:

1. ANKARA YILDIRIM BEYAZIT UNIVERSITY

Abstract

PID controllers are important control methods that are widely used in industrial processes. Proper tuning of PID gains is critical for achieving the state-of-the-art system performance. Therefore, optimizing PID gains is an important research topic in the field of control engineering. In this study, PID controller gains are automatically tuned using metaheuristic optimization methods. These methods use an iterative approach to calculate optimal values of PID controller gains based on different optimization techniques. The interaction between artificial intelligence and control systems requires a multidimensional approach across different disciplines. In the study, we perform Particle Swarm Optimization, Gray Wolf Optimization, Whale Optimization Algorithm, Firefly Algorithm, Harris Hawks Optimization, Artificial Hummingbird Algorithm and African Vulture Optimization Algorithm to determine PID gains. In the simulation, step input is applied to the dynamic equation of the unmanned free-swimming submersible vehicle. The fitness function is determined with respect to controller integral square error, settling time value, and maximum percent overshoot value. We also evaluate the optimization time of the selected algorithms based on the fitness function. Experimental results present that Artificial Hummingbird Algorithm, Gray Wolf Optimization and Particle Swarm Optimization achieve significant performance. This underlines that using metaheuristic methods in PID gain optimization increase overall system performance.

Publisher

Academic Platform Journal of Engineering and Smart Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Trajectory Following in VTOL Cargo UAVs: Adaptive Control in Changing Payload Scenarios;2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3