Modal Testing and Finite Element Analysis of a Battery Rack for Seismic Applications

Author:

Berak Elzbieta1

Affiliation:

1. Marconi Communications

Abstract

One of the most challenging aspects of reliability testing in the telecommunication industry is earthquake resistance testing. Cabinet systems, battery racks, equipment racks, and distribution frames are considered compliant with Network Equipment-Building System (NEBSTM) criteria for surviving earthquake conditions if test results indicate (1) the maximum deflection of the top of the structure does not exceed 7.6 cm (3 in.), (2) there are no permanent deformations or structural damage, and (3) the equipment or batteries remain functional (as defined in NEBS Requirements: Physical Protection, Specification GR-73 Issue 2). Based on seismic test results of a large population of telecom enclosures, it is accepted that a system always passes the seismic test if its fundamental natural frequency is at least 6 Hz. It is costly to produce and configure enclosures and conduct seismic qualification testing. To minimize the risk of telecom system failure, a modal finite element analysis (FEA) of the system should first be performed. Numerical results of the FEA should then be verified with experimental resonance search data generated by modal testing or sine sweep testing, combined with static pull testing where applicable. The resonance search results will determine the need for seismic testing (seismic analysis) prior to seismic qualification testing. This paper elaborates on key aspects of the static pull test method supported by the test results for a cabinet framework and a configured cabinet relative to the seismic test results. The paper also discusses sine sweep testing of a battery cabinet and results of two modal test methods used on the corresponding battery rack. Finally, this paper describes modal FEA of the same battery rack anchored to a concrete pad supported by a polystyrene plastic foam sheet and explains the correlation of the numerical results with the experimental modal analysis results. The correlated model serves as the baseline model for analyzing other battery racks and equipment cabinets configured with batteries.

Publisher

Institute of Environmental Sciences and Technology (IEST)

Subject

Safety, Risk, Reliability and Quality,Environmental Chemistry,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3