Affiliation:
1. Marconi Communications
Abstract
One of the most challenging aspects of reliability testing in the telecommunication industry is earthquake resistance testing. Cabinet systems, battery racks, equipment racks, and distribution frames are considered compliant with Network Equipment-Building System (NEBSTM) criteria for surviving earthquake conditions if test results indicate (1) the maximum deflection of the top of the structure does not exceed 7.6 cm (3 in.), (2) there are no permanent deformations or structural damage, and (3) the equipment or batteries remain functional (as defined in NEBS Requirements: Physical Protection, Specification GR-73 Issue 2). Based on seismic test results of a large population of telecom enclosures, it is accepted that a system always passes the seismic test if its fundamental natural frequency is at least 6 Hz. It is costly to produce and configure enclosures and conduct seismic qualification testing. To minimize the risk of telecom system failure, a modal finite element analysis (FEA) of the system should first be performed. Numerical results of the FEA should then be verified with experimental resonance search data generated by modal testing or sine sweep testing, combined with static pull testing where applicable. The resonance search results will determine the need for seismic testing (seismic analysis) prior to seismic qualification testing. This paper elaborates on key aspects of the static pull test method supported by the test results for a cabinet framework and a configured cabinet relative to the seismic test results. The paper also discusses sine sweep testing of a battery cabinet and results of two modal test methods used on the corresponding battery rack. Finally, this paper describes modal FEA of the same battery rack anchored to a concrete pad supported by a polystyrene plastic foam sheet and explains the correlation of the numerical results with the experimental modal analysis results. The correlated model serves as the baseline model for analyzing other battery racks and equipment cabinets configured with batteries.
Publisher
Institute of Environmental Sciences and Technology (IEST)
Subject
Safety, Risk, Reliability and Quality,Environmental Chemistry,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献