Abstract
Two experiments evaluated the effect of a multispecies fungal complex (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguay). In Experiment 1 (E1), the impact of adding BP to a total mixed ration (TMR) on ruminal fermentation profile and TMR in situ degradation kinetics was assessed. In Experiment 2 (E2), the effect of adding BP to various substrates on in vitro fermentability was examined. In E1, 4 Holstein cows with rumen cannulas were randomly assigned to Control (TMR with forage:concentrate ratio 75:25) or Control + 120 g/cow/d of BP (BP) and received ad libitum TMR for 30 days. Samples of TMR were ruminally incubated to estimate in situ degradation kinetic. Ruminal pH, ammonia, and volatile fatty acids (VFA) concentrations were measured just before feeding, 4 h and 8 h post feeding. In E2, a factorial arrangement included two BP levels (0 -Control or 6.5 g BP per kg dry matter incubated-WBP) and 8 substrates. In vitro gas production kinetics (GPk), dry matter digestibility (IVDMD), methanogenic potential (CH4), partitioning factor (PF), VFA, and microbial crude protein (MCP) were estimated. The BP increased proportion of propionate (P ≤ 0.05) and reduced ketogenic:glucogenic ratio and Lag phase of NDF (P ≤ 0.05). WBP tended to increase IVDMD, and substrate affected GPk, IVDMD, CH4, PF, VFA and MCP (P ≤ 0.01). Overall, BP improved ruminal metabolism favoring a more glucogenic profile, a shortening Lag phase in NDF degradation, and increasing IVDMD.
Publisher
Universidad de la República, Facultad de Agronomía
Reference41 articles.
1. Adesogan AT. Using dietary additives to manipulate rumen fermentation and improve nutrient utilization and animal performance. In: 20th Florida Ruminant Nutrition Symposium [Internet]. Gainesville: University of Florida; 2009 [cited 2024 Feb 26]. p. 13-38. Available from: https://animal.ifas.ufl.edu/apps/dairymedia/rns/2009/Adesogan.pdf
2. Adesogan AT, Ma ZX, Romero JJ, Arriola KG. Improving cell wall digestion and animal performance with fibrolytic enzymes. J Anim Sci. 2014;92:1317-30. Doi: 10.2527/jas.2013-7273.
3. Al-Masri MR. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health Prod. 2003;35:155-67. Doi: 10.1023/a:1022877603010.
4. Arriola KG, Kim SC, Staples CR, Adesogan AT. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. J Dairy Sci. 2011; 94:832-41. Doi: 10.3168/jds.2010-3424.
5. Arriola KG, Oliveira AS, Ma ZX, Lean J, Giurcanu MC, Adesogan AT. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J Dairy Sci. 2017;100(6):4513–27.doi: 10.3168/jds.2016- 12103.