Regulation of lipopolysaccharide O antigen expression in Pseudomonas aeruginosa

Author:

Kintz Erica1,Goldberg Joanna B1

Affiliation:

1. Department of Microbiology, University of Virginia Health System, 1300 Jefferson Park Avenue, 7230 Jordan Hall, Charlottesville, VA 22908-0734, USA.

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitously found in the environment. It is an important opportunistic pathogen in immunocompromised patients and causes life-threatening lung infections in individuals with cystic fibrosis. A prominent virulence factor for many Gram-negative bacteria, including P. aeruginosa, is lipopolysaccharide (LPS), which is an immunodominant antigen located in the outer portion of the outer membrane. P. aeruginosa produces two O antigens that are attached to lipid A + core: a B-band O antigen and an A-band O polysaccharide. The B-band O antigen-repeating unit of LPS is responsible for serotype specificity; strains lacking O antigen have been shown to be less virulent in animal models of infection. What is less well understood is how the O antigen chain length is regulated and why P. aeruginosa and some other bacteria show two preferred O antigen lengths. P. aeruginosa encodes two genes encoding O antigen chain length regulators. These genes, wzz1 and wzz2, influence the expression of the long and very long chain lengths, respectively. The long chain length appears more important for resistance to the action of sera and virulence in a mouse model of infection, while the very long chain length appears to be more sensitive to environmental stress conditions. Studies in other bacteria point to regulation at the level of transcription and complex formation as being involved in determining the O antigen chain length and may provide clues to the regulation in P. aeruginosa.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3