Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens

Author:

Chen Hanyu1ORCID,Moraru Carmen1ORCID

Affiliation:

1. Department of Food Science, Cornell University, Ithaca, New York, USA

Abstract

ABSTRACT Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes , Staphylococcus aureus , Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R 2 ≥ 0.70). Synergistic effects were found for E. coli , L. monocytogenes , and S . Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus , and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found ( P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3