Use of high-throughput mass spectrometry to elucidate host–pathogen interactions in Salmonella

Author:

Rodland Karin D1,Adkins Joshua N2,Ansong Charles2,Chowdhury Saiful2,Manes Nathan P2,Shi Liang2,Yoon Hyunjin3,Smith Richard D2,Heffron Fred4

Affiliation:

1. Pacific Northwest National Laboratory, Richland, WA 99354, USA.

2. Pacific Northwest National Laboratory, Richland, WA 99354, USA

3. Oregon Health & Science University, Portland, OR 97239, USA

4. Oregon Health & Science University, Portland, OR 97239, USA.

Abstract

Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host–pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein–protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host–pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3