Harnessing the potential of lipid-based nanomedicines for type-specific ovarian cancer treatments

Author:

Leung Ada WY12,Kalra Jessica13,Santos Nancy Dos1,Bally Marcel B1245,Anglesio Michael S2

Affiliation:

1. Experimental Therapeutics, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada

2. OVCARE and the Department of Pathology and Laboratory Medicine, University of British Columbia, Robert HN Ho Research Centre, 275–2635 Laurel Street, Vancouver, BC V5Z 1M9, Canada

3. Department of Biology, Langara College, Vancouver, BC, Canada

4. Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada

5. Centre for Drug Research and Development, Vancouver, BC, Canada

Abstract

Epithelial ovarian cancers are a group of at least five histologically and clinically distinct diseases, yet at this time patients with these different diseases are all treated with the same platinum and taxane-based chemotherapeutic regimen. With increased knowledge of histotype-specific differences that correlate with treatment responses and resistance, novel treatment strategies will be developed for each distinct disease. Type-specific or resistance-driven molecularly targeted agents will provide some specificity over traditional chemotherapies and it is argued here that nanoscaled drug delivery systems, in particular lipid-based formulations, have the potential to improve the delivery and specificity of pathway-specific drugs and broad-spectrum cytotoxic chemotherapeutics. An overview of the current understanding of ovarian cancers and the evolving clinical management of these diseases is provided. This overview is needed as it provides the context for understanding the current role of drug delivery systems in the treatment of ovarian cancer and the need to design formulations for treatment of clinically distinct forms of ovarian cancer.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3