Genome-wide association and pharmacological profiling of 29 anticancer agents using lymphoblastoid cell lines

Author:

Brown Chad C1,Havener Tammy M2,Medina Marisa W3,Jack John R1,Krauss Ronald M3,McLeod Howard L2,Motsinger-Reif Alison A4

Affiliation:

1. Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA

2. Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

3. Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA

4. Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA.

Abstract

Aim: Association mapping with lymphoblastoid cell lines (LCLs) is a promising approach in pharmacogenomics research, and in the current study we utilized LCLs to perform association mapping for 29 chemotherapy drugs. Materials & methods: Currently, we use LCLs to perform genome-wide association mapping of the cytotoxic response of 520 European–Americans to 29 different anticancer drugs; the largest LCL study to date. A novel association approach using a multivariate analysis of covariance design was employed with the software program MAGWAS, testing for differences in the dose–response profiles between genotypes without making assumptions about the response curve or the biologic mode of association. Additionally, by classifying 25 of the 29 drugs into eight families according to structural and mechanistic relationships, MAGWAS was used to test for associations that were shared across each drug family. Finally, a unique algorithm using multivariate responses and multiple linear regressions across pairs of response curves was used for unsupervised clustering of drugs. Results: Among the single-drug studies, suggestive associations were obtained for 18 loci, 12 within/near genes. Three of these, MED12L, CHN2 and MGMT, have been previously implicated in cancer pharmacogenomics. The drug family associations resulted in four additional suggestive loci (three contained within/near genes). One of these genes, HDAC4, associated with the DNA alkylating agents, shows possible clinical interactions with temozolomide. For the drug clustering analysis, 18 of 25 drugs clustered into the appropriate family. Conclusion: This study demonstrates the utility of LCLs in identifying genes that have clinical importance in drug response and for assigning unclassified agents to specific drug families, and proposes new candidate genes for follow-up in a large number of chemotherapy drugs. Original submitted 16 August 2013; Revision submitted 16 October 2013

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3