Biomedical interfaces: titanium surface technology for implants and cell carriers

Author:

Schuler Martin1,Trentin Diana1,Textor Marcus1,Tosatti Samuele GP1

Affiliation:

1. Laboratory for Surface Science and Technology, BioInterfaceGroup, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland

Abstract

Titanium and its alloys have become key materials for biomedical applications, mainly owing to their compatibility with human tissues and their mechanical strength. Effects of surface topography on cell and tissue response have been investigated extensively in the past, while (bio)chemical surface modification and its combination with designed topographies have remained largely unexplored. The following report describes some of the strategies used or intended to modify titanium surfaces, based on biological principles, with a focus on ultrathin biomimetic adlayers. One of the visions behind such approaches is to achieve improved healing and integration responses after implantation for patients, especially for those suffering from deficiencies, for example, diabetes or osteoporosis, two diseases that have increased drastically in our society during the last century.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3