Improved Biological Responses of Titanium Coating Using Laser-Aided Direct Metal Fabrication on SUS316L Stainless Steel

Author:

Kim Tae-InORCID,Lee Se-WonORCID,Jo Woo-Lam,Kim Yong-Sik,Kim Seung-Chan,Kwon Soon-Yong,Lim Young-WookORCID

Abstract

Direct metal fabrication (DMF) coatings have the advantage of a more uniform porous structure and superior mechanical properties compared to coatings provided by other methods. We applied pure titanium metal powders to SUS316L stainless steel using laser-aided DMF coating technology with 3D printing. The purpose of this study was to determine the efficacy of this surface modification of stainless steel. The capacity of cells to adhere to DMF-coated SUS316L stainless steel was compared with machined SUS316L stainless steel in vitro and in vivo. Morphological in vitro response to human osteoblast cell lines was evaluated using scanning electron microscopy. Separate specimens were inserted into the medulla of distal femurs of rabbits for in vivo study. The distal femurs were harvested after 3 months, and were then subjected to push-out test and histomorphometrical analyses. The DMF group exhibited a distinct surface chemical composition, showing higher peaks of titanium compared to the machined stainless steel. The surface of the DMF group had a more distinct porous structure, which showed more extensive coverage with lamellipodia from osteoblasts than the machined surface. In the in vivo test, the DMF group showed better results than the machined group in the push-out test (3.39 vs. 1.35 MPa, respectively, p = 0.001). In the histomorphometric analyses, the mean bone-to-implant contact percentage of the DMF group was about 1.5 times greater than that of the machined group (65.4 ± 7.1% vs. 41.9 ± 5.6%, respectively; p < 0.001). The porous titanium coating on SUS316L stainless steel produced using DMF with 3D printing showed better surface characteristics and biomechanical properties than the machined SUS316L.

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. Corrosion and surface modification on biocompatible metals: A review

2. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

3. Titanium alloy vs. stainless steel miniscrews: An in vivo split-mouth study;Bollero;Eur. Rev. Med. Pharmacol. Sci.,2018

4. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: A mechanical and histologic analysis

5. Titanium as the material of choice for cementless femoral components in total hip arthroplasty;Head;Clin. Orthop. Relat. Res.,1995

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3