Biomedical applications of plasmon resonant metal nanoparticles

Author:

Liao Hongwei1,Nehl Colleen L2,Hafner Jason H12

Affiliation:

1. Department of Chemistry, Rice University, Houston, TX, USA

2. Department of Physics & Astronomy, Rice University, Houston, TX, USA.

Abstract

The strong optical absorption and scattering of noble metal nanoparticles is due to an effect called localized surface plasmon resonance, which enables the development of novel biomedical applications. The resonant extinction, which can be tuned to the near-infrared, allows the nanoparticles to act as molecular contrast agents in a spectral region where tissue is relatively transparent. The localized heating due to resonant absorption, also tunable into the near-infared, enables new thermal ablation therapies and drug delivery mechanisms. The sensitivity of these resonances to their environment leads to simple affinity sensors for the detection of low-level molecular analytes. Coupled with their general lack of toxicity, these applications suggest that noble metal nanoparticles are a highly promising class of nanomaterials for new biomedical applications.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 352 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3