Octupole plasmon resonance improves light enhancement by a metal nanodimer

Author:

Sehrawat SagarORCID,Shevchenko AndriyORCID

Abstract

Metal nanoparticles are extensively used in science and technology to resonantly confine and enhance optical fields. Highest enhancement factors are achieved in nanosized gaps of metal dimers. It is commonly assumed that higher-order plasmon resonances, such as electric quadrupole and octupole, are in nanoparticles much weaker than a dipole resonance. Indeed, in the classical multipole expansion that deals with the scattered fields, these “dark” multipoles can be invisible. In this work, we show that an octupole resonance in a metal nanodimer can lead to a substantially larger field enhancement than a dipole resonance. The effect is explained by the fact that the near-field enhancement provided by the excited electric currents can be strong when the excitation is dark. This finding extends the design principles of a plasmonic nanostructure toward higher-order multipoles that, being naturally narrowband, can be useful for a variety of applications, especially in plasmonic sensing and detection.

Funder

Research Council of Finland

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3