Nanomaterials for wound healing: scope and advancement

Author:

Kalashnikova Irina1,Das Soumen1,Seal Sudipta12

Affiliation:

1. Nanoscience Technology Center, Advanced Materials Processing & Analysis Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA

2. Materials Science & Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA

Abstract

Innovative methods for treating impaired and hard-to-heal wounds are needed. Novel strategies are needed for faster healing by reducing infection, moisturizing the wound, stimulating the healing mechanisms, speeding up the wound closure and reducing scar formation. In the past few years, nanotechnology has been constantly revolutionizing the treatment and management of wound care, by offering novel solutions which include but are not limited to: state-of-the-art materials, so called ‘smart’ biomaterials and theranostic nanoparticles. Nanotechnology-based therapy has recently announced itself as a possible next-generation therapy that is able to advance wound healing to cure chronic wounds. In this communication, the recent progress in advanced therapy for cutaneous wound healing during last 5 years using a nanotechnology-based approach is summarized.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3