Vascular-targeted photothermal therapy of an orthotopic murine glioma model

Author:

Day Emily S1,Zhang Linna2,Thompson Patrick A2,Zawaski Janice A2,Kaffes Caterina C2,Gaber M Waleed2,Blaney Susan M2,West Jennifer L3

Affiliation:

1. Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA

2. Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA

3. Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA.

Abstract

Aim: To develop nanoshells for vascular-targeted photothermal therapy of glioma. Materials & methods: The ability of nanoshells conjugated to VEGF and/or poly(ethylene glycol) (PEG) to thermally ablate VEGF receptor-2-positive endothelial cells upon near-infrared laser irradiation was evaluated in vitro. Subsequent in vivo studies evaluated therapy in mice bearing intracerebral glioma tumors by exposing tumors to near-infrared light after systemically delivering saline, PEG-coated nanoshells, or VEGF-coated nanoshells. The treatment effect was monitored with intravital microscopy and histology. Results: VEGF-coated but not PEG-coated nanoshells bound VEGF receptor-2-positive cells in vitro to enable targeted photothermal ablation. In vivo, VEGF targeting doubled the proportion of nanoshells bound to tumor vessels and vasculature was disrupted following laser exposure. Vessels were not disrupted in mice that received saline. The normal brain was unharmed in all treatment and control mice. Conclusion: Nanoshell therapy can induce vascular disruption in glioma. Original submitted 27 September 2011; Revised submitted 12 December 2011; Published online 14 May 2012

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3