Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data

Author:

Abdillah Abid FamasyaORCID,Putra Cornelius Bagus PurnamaORCID,Apriantoni ApriantoniORCID,Juanita SafitriORCID,Purwitasari DianaORCID

Abstract

Background: Question-answer (QA) is a popular method to seek health-related information and biomedical data. Such questions can refer to more than one medical entity (multi-label) so determining the correct tags is not easy. The question classification (QC) mechanism in a QA system can narrow down the answers we are seeking. Objective: This study develops a multi-label classification using the heterogeneous ensembles method to improve accuracy in biomedical data with long text dimensions. Methods: We used the ensemble method with heterogeneous deep learning and machine learning for multi-label extended text classification. There are 15 various single models consisting of three deep learning (CNN, LSTM, and BERT) and four machine learning algorithms (SVM, kNN, Decision Tree, and Naïve Bayes) with various text representations (TF-IDF, Word2Vec, and FastText). We used the bagging approach with a hard voting mechanism for the decision-making. Results: The result shows that deep learning is more powerful than machine learning as a single multi-label biomedical data classification method. Moreover, we found that top-three was the best number of base learners by combining the ensembles method. Heterogeneous-based ensembles with three learners resulted in an F1-score of 82.3%, which is better than the best single model by CNN with an F1-score of 80%. Conclusion: A multi-label classification of biomedical QA using ensemble models is better than single models. The result shows that heterogeneous ensembles are more potent than homogeneous ensembles on biomedical QA data with long text dimensions. Keywords: Biomedical Question Classification, Ensemble Method, Heterogeneous Ensembles, Multi-Label Classification, Question Answering

Publisher

Universitas Airlangga

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges and Future Directions on Business Intelligence;Advances in Business Strategy and Competitive Advantage;2024-06-30

2. Supervised learning techniques for blood product prediction in patients with hematologic diseases: a multi-centre study in Western Algeria;International Journal of Information Technology;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3