Slam Loads and Kinematics of Wave-Piercing Catamarans During Bow Entry Events in Head Seas

Author:

Shabani Babak1,Lavroff Jason1,Davis Michael R.1,Holloway Damien S.1,Thomas Giles A.2

Affiliation:

1. School of Engineering / University of Tasmania

2. University College London

Abstract

Centre bow (CB) design for wave-piercing catamarans (WPCs) is a critical compromise between minimization of slamming and protection against deck diving. To inform the design process, this article investigates the slam loads and kinematics during bow entry events in regular head seas for a 112-m WPC with systematic variations to its CB and wet-deck geometry. Model tests using a 2.5-m hydroelastic segmented catamaran considered five different CB configurations, designated as the parent, high, low, long, and short CB. The results indicated that changes in the CB length had little effect on the general kinematic trends obtained for the pitch, heave, and bow vertical displacement at the instant of slamming, but increasing the wet-deck height resulted in an increase in heave (but not pitch) at slamming. Two new design ratios are proposed. The CB immersion depth to arch height ratio showed slamming occurring in the range of 0.3–0.6 depending on the wave encounter frequency and the CB configuration. The CB buoyancy in the encountered waves was estimated by considering both immersion depth and area along the CB in waves through relative motion analyses. It was found that the buoyancy to slam force ratio increased with increasing wet-deck height but not with increasing CB length. This suggests that an optimal CB configuration could be achieved by first modifying the arched cross-structure to reduce the arch filling effect on slamming severity and then maximizing the CB buoyancy to slam force ratio by increasing either the wet-deck height or the CB length. 1. Introduction An above-water centre bow (CB) for improving seakeeping is a feature of modern wave-piercing catamarans (WPCs) (Soars 1993; Boulton 1998; Fang & Chan 2007; Dubrovsky 2014). Figure 1 shows a 112-m Incat WPC with the CB located between the two demihulls. There are several important factors to be considered when designing such a central bow. First, the reserve buoyancy offered by the CB is the primary design factor for providing a pitchrestoring moment and eliminating deck diving in the following waves (Davis & Whelan 2007). Second, the CB configuration can influence the slamming loads in WPCs during bow entry in waves (Lavroff et al. 2013). This is due to the complex fluid-structure interaction in the CB area. When the CB enters waves, the water gradually fills the spaces between the CB and demihulls, referred to here as archways, and may result in complete closure of the archways and slamming in excessive pitch conditions. Finally, the frequency of slamming occurrence is, to some extent, related to the CB design as it contributes to lateral jet flow during the CB entry. As a result, slamming may occur in even partial water entrapment below the arch wet-deck cross-structure, which could be the case in small pitch motions (Lavroff & Davis 2015).

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3