Assessment of Alternative Fuels and Engine Technologies to Reduce GHG

Author:

Lindstad Elizabeth1,Gamlem Gunnar1,Rialland Agathe1,Valland Anders1

Affiliation:

1. SINTEF Ocean

Abstract

Current greenhouse gas emissions (GHG) from maritime transport represent around 3% of global anthropogenic GHG emissions. These emissions will have to be cut at least in half by 2050 compared to 2008 as adopted by IMO´s initial GHG-strategy to be consistent with Paris agreement goals. Basically, the required GHG emissions reduction can be achieved through: Design and other technical improvement of ships; Operational Improvement; Fuels with zero or lower GHG footprint; or a combination of these. Where fuels with zero or lower GHG footprints often are perceived to be the most promising measure. The motivation for this study has therefore been to investigate these alternative fuels with focus on their feasibility, energy utilization and cost in addition to their GHG reduction potential. The results indicate: First, that fuels with zero or very low GHG emissions will be costly; Second, that these fuels might double or triple the maritime sector's energy consumption in a Well-to-Wake context; Third, if large amounts of renewable electricity becomes available at very low prices, synthetic E-fuels such as E-diesel and E-LNG which can be blended with conventional fuels and used on conventional vessels, will be more commercially attractive than hydrogen and ammonia.

Publisher

SNAME

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3