Variation Simulation and Diagnosis Model of Compliant Block Assembly Considering Welding Deformation

Author:

Lee Junghyun1,Choi Wooyoung2,Kang Minseok2,Chung Hyun3

Affiliation:

1. Defense Agency for Technology and Quality

2. Graduate School of Ocean Systems Engineering

3. Ocean Engineering at Chungnam National University

Abstract

This article proposes a variation simulation and diagnosis model for ship block assembly processes considering the effects of welding distortion. The welding process and the deformation pattern affecting the final shape of a block assembly are diagnosed. Prior studies on welding distortion mainly focused on mitigation methodologies. In this research, welding distortion is regarded as the main cause of geometric variation in parts. In addition, how geometric variations are accumulated throughout multiple assembly processes is mathematically modeled. The variation simulation model is based on a state space equation, where variations of previous stages are propagated to the current stage. The diagnosis model predicts the quantitative effect of each variation source on the final assembly's geometrical variation, based on a normal equation and designated component analysis. The proposed model is simulated with FEM (Dassault Systèmes Americas Corp., Waltham, MA) and MATLAB (Mathworks (https://www.mathworks.com/), Massachusetts, United States) replicating a realistic block assembly process for validation. The model can effectively simulate the propagation of welding distortion and quantitatively diagnose variation patterns and welding processes. 1. Introduction Analysis, management, and variation diagnostics are some of the important aspects of the production process. These have been mainly studied in mass production processes such as in the automobile industry. Mantripragada and Whitney (1999) and Whitney (2004) proposed a tolerance analysis method for the multistage rigid body assembly using a state space equation. Huang et al. (2006a, 2007) proposed a ship block tolerance model for the single and multiple stage variation propagation of a rigid body model. Liu and Hu (1995,1997) proposed a compliant assembly model using FEM, called the method of influence coefficients (MIC). Govik et al. (2012) proved MIC using an FEM simulation. Variation propagation in a multiple stage process while considering a compliant assembly has been proposed by Camelio et al. (2003, 2002a). Variation propagation models considering the location of data such as in key control characteristics, key product characteristics, and a local coordinate system of parts were proposed by Qu et al. (2016).

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3