Computer-Aided Design/Tolerancing Integration: A Novel Tolerance Analysis Model of Assemblies With Composite Positional Defects and Deformations of Nonrigid Parts

Author:

Korbi A.1,Tlija M.2,Louhichi B.3

Affiliation:

1. National Engineering School of Monastir, Mechanical Engineering Laboratory (LGM, ENIM), University of Monastir, Monastir 5019, Tunisia

2. Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

3. National Engineering School of Sousse, Mechanical Laboratory of Sousse (LMS, ENISo), University of Sousse, Sousse 4023, Tunisia

Abstract

Abstract Nowadays, the tolerancing integration in computer-aided design (CAD) tools remains among the major goals of mechanical manufacturers. In the virtual product development, ideal and rigid models are used in the digital mockup (DMU). Hence, research works developed integrated CAD models for tolerance analysis, while considering manufacturing defects. However, the tolerance analysis in the case of composite positional tolerance for feature patterns, commonly used in the industry, becomes a difficult activity with the consideration of parts deformations. Thus, this paper presents a novel CAD model for the tolerance analysis considering composite positional defect of features set and nonrigid component deformations due to external mechanical loads. The modeling of rigid components with dimensional defects is established based on the numerical perturbation method. Indeed, the relationships between driving and driven dimensions are determined to obtain the configurations in maximum and least material of the CAD model. Thereafter, the geometrical deviations are modeled by face displacements. The modeling of composite positional errors is performed while respecting the feature relating position tolerance zone framework and the pattern-location tolerance zone framework constraints, as well as the maximum or least material condition. The deviations caused by nonrigid part deformations are considered by the integration of finite element results into the CAD model. The realistic configurations of the assembly are obtained after the updating of mating constraints between rigid and nonrigid parts with defects. The composite positional tolerance is analyzed with the simulation of relative motion between parts. A case study is proposed to evaluate the developed tolerancing method.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3