Computation of Viscous Flow Around Propeller-Body Configurations: Series 60 CB = 0.6 Ship Model

Author:

Stern F.1,Kim H. T.1,Zhang D. H.2,Toda Y.3,Kerwin J.2,Jessup S.4

Affiliation:

1. The University of Iowa

2. Massachusetts Institute of Technology

3. Kobe University of Mercantile Marine

4. Naval Surface Warfare Center

Abstract

Validation of a viscous-flow method for predicting propeller-hull interaction is provided through detailed comparisons with recent extensive experimental data for the practical three-dimensional configuration of the Series 60 CB = 0.6 ship model. Modifications are made to the k-e turbulence model for the present geometry and application. Agreement is demonstrated between the calculations and global and some detailed aspects of the data; however, very detailed resolution of the flow is lacking. This supports the previous conclusion for propeller-shaft configurations and axisymmetric bodies that the present procedures can accurately simulate the steady part of the combined propeller-hull flow field, although turbulence modeling and detailed numerical treatments are critical issues. The present application enables a more critical evaluation through further discussion of these and other relevant issues, such as the use of radial-and angular-varying body-force distributions, the relative importance of turbulence modeling and grid density on the resolution of the harmonics of the propeller inflow, and three-dimensional propeller-hull interaction, including the differences for the nominal and effective inflows and for the resulting steady and unsteady propeller performance. Also, comparisons are made with an inviscid-flow method. Lastly, some concluding remarks are made concerning the limitations of the method, requirements and prognosis for improvements, and application to the design of wake-adapted propellers.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Best modeling practice for self-propulsion simulation of ship model in calm water;Physics of Fluids;2023-10-01

2. CFD Body Force Propeller Model with Blade Rotational Effect;Applied Sciences;2022-11-07

3. Theoretical and numerical methods;Marine Rudders, Hydrofoils and Control Surfaces;2022

4. Numerical Study on Flow Around Modern Ship Hulls with Rudder-Propeller Interactions;Journal of Marine Science and Application;2019-11-12

5. Integral Force/Moment Waterjet Model for CFD Simulations;Journal of Fluids Engineering;2010-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3