CFD Body Force Propeller Model with Blade Rotational Effect

Author:

Wu Ping-Chen

Abstract

The purpose of this study is to consider propeller geometry and blade rotation in the propeller model in a CFD code. To predict propeller performance, a body force propeller model was developed based on blade element theory and coupled with URANS (unsteady Reynolds-averaged Navier–Stokes) solver CFDSHIP-IOWA V4.5 both implicitly and interactively. The model was executed inside the flow solver every inner iteration. The grid points inside each 2D blade geometry were identified by a numerical search algorithm. To calculate the lift coefficient, the total flow velocities at 25% foil chord length were obtained using the inverse distance weighting interpolation from the RANS solution. The body forces were distributed linearly along the chord length with the maximal value located at the leading edge and zero at the trailing edge. The main achievements are: (1) for a KP505 propeller in an open water condition, the error of the thrust coefficient generally is around or less than 3%, which is a better prediction than the previous model. (2) For a behind-hull condition, the error is about 1%. (3) For an E1619 propeller in an open water condition, the error is around 6%. (4) The blade-to-blade effect and unsteady flow field between blades are sufficiently resolved by the model.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Tokyo 2015 Workshop on CFD in Ship Hydrodynamics. 2015.

2. Shen, Z., and Korpus, R. Numerical simulations of ship self-propulsion and maneuvering using dynamic overset grids in OpenFOAM. Proceedings of the Tokyo 2015 CFD Workshop.

3. Liu, X., Zhao, W., and Wan, D. Verification and Validation for CFD Simulation of KRISO Container Ship. Proceedings of the Tokyo 2015 CFD Workshop.

4. Sun, T., Yin, C., Wu, J., and Wan, D. Numerical Computations of Resistance for Japan Bulk Carrier in Calm Water. Proceedings of the Tokyo 2015 CFD Workshop.

5. Wang, J., Liu, X., and Wan, D. Numerical prediction of free running at model point for ONR Tumblehome using overset grid method. Proceedings of the Tokyo 2015 CFD Workshop.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3