Analytical Expressions for Stability and Bifurcations of Turret Mooring Systems

Author:

Garza-Rios Luis O.1,Bernitsas Michael M.1

Affiliation:

1. The University of Michigan

Abstract

The eight necessary and sufficient conditions for stability of turret mooring systems (TMS) are derived analytically. Analytical expressions for TMS bifurcation boundaries where static and dynamic loss of stability occur are also derived. These analytical expressions provide physics-based means to evaluate the stability properties of TMS, find elementary singularities, and describe the morphogeneses occurring as a parameter (or design variable) or group of parameters are varied. They eliminate the need to compute numerically the TMS eigenvalues. Analytical results are verified by comparison to numerical results generated by direct computation of eigenvalues and their bifurcations. Catastrophe sets (design charts) are constructed in the two-dimensional parametric design space to show the dependence of design variables on the stability of the system. The TMS mathematical model consists of the nonlinear horizontal plane—surge, sway and yaw—fifth-order, large drift, low speed maneuvering equations. Mooring lines are modeled quasistatically by catenaries. External excitation consists of time independent current, steady wind, and second-order mean drift forces.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Procedure to Analyze the Maneuvering Stability of FPSO Systems in the Design Stage;Journal of Offshore Mechanics and Arctic Engineering;2002-10-22

2. Sensitivity and Robustness of Hydrodynamic Mooring Models;Journal of Offshore Mechanics and Arctic Engineering;2002-10-22

3. Design of FPSO's Based On Maneuvering Stability;Practical Design of Ships and Other Floating Structures;2001

4. Comparative Assessment of Hydrodynamic Models in Slow-Motion Mooring Dynamics;Journal of Offshore Mechanics and Arctic Engineering;1999-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3