Unsteady Effects During Resistance Tests on a Ship Model in a Towing Tank

Author:

Doctors Lawrence J.1,Day Alexander H.2,Clelland David2

Affiliation:

1. The University of New South Wales

2. The Universities of Glasgow and Strathclyde

Abstract

It is known that there are oscillations in the wave resistance during the constant-velocity phase of a towing-tank resistance test on a ship model. In this work, the unsteady thin-ship resistance theory has been applied to this case. The results have been compared with experiment data obtained using a towing carriage the velocity history of which can be programmed. It is demonstrated here that generally excellent correlation exists between the theory and the experiments. In particular, one can predict the influence of Froude number, rate of acceleration, and type of smoothing of the acceleration on the characteristics of the oscillations. These characteristics include the amplitude, rate of decay, frequency, and phasing of the oscillations in the curve of wave resistance versus time.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental analysis of a planing monohull model during forward acceleration: part I – comparison with steady-state experiment results;Ships and Offshore Structures;2024-04-08

2. Unsteady ship–bank interaction: a comparison between experimental and computational predictions;Ship Technology Research;2023-11-10

3. Wash waves generated by ship moving across a depth change;Ocean Engineering;2023-05

4. Wave drag during an unsteady motion;Journal of Fluid Mechanics;2022-11-04

5. A Primer of Inland Vessel Maneuverability;Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3