Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a Ducted Propulsor

Author:

Hsiao C.-T.1,Chahine G. L.1

Affiliation:

1. Dynaflow, Inc.

Abstract

Cavitation inception in a ducted propulsor was studied numerically using Navier-Stokes computations and bubble dynamics models. Experimental observations of the propulsor model and previous numerical computations using Reynolds-averaged Navier-Stokes (RANS) codes indicated that cavitation inception occurred in the region of interaction of the leakage and trailing tip vortices. The RANS simulations failed, however, to predict correctly both the cavitation inception index value and the inception location. To improve the numerical predictions, we complemented here the RANS computations with a direct Navier-Stokes simulation in a reduced computational domain including the region of interaction of the two vortices. Initial and boundary conditions in the reduced domain were provided by the RANS solution of the full ducted propulsor flow. Bubble nuclei were released in this flow field, and spherical and nonspherical bubble dynamics models were exercised to investigate cavitation inception. This resulted in a solution in much better agreement with the experimental measurements than the original RANS solution. Both the value of the cavitation inception index and the location of the cavitation inception were very well captured. The characteristics of the emitted acoustic signals and of the bubble shapes during a cavitation event were also computed.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3