Affiliation:
1. Delft University of Technology
Abstract
The outfitting process of shipyards building complex ship types, such as offshore, passenger, and military vessels, is becoming more critical to efficient ship production as the number of components installed on these vessels continues to increase. Outfitting of such vessels is generally characterized by disorganization and rework due to a lack of coordination between the shipyard and subcontractors as well as insufficiently detailed planning. This paper presents a mathematical model for the outfitting planning process of a shipyard building complex vessels. A qualitative description is included for the constraints and objectives underlying the developed mathematical model for the Ship Outfitting Scheduling Problem (SOSP). A heuristic solution technique is also developed for solving the SOSP, and a test case of six midship sections from a recently constructed pipelaying vessel is presented to show the feasibility of both the mathematical model and heuristic. This test case shows that it is possible to find a high-quality planning for the SOSP with a reasonable computational effort. Furthermore, it was found that the greatest priority should be given to components that have the earliest deadlines or dependents with such deadlines. Components should also be scheduled in such a way to minimize the required movements of outfitting personnel between the different work sites of a shipyard.
Publisher
The Society of Naval Architects and Marine Engineers
Subject
Mechanical Engineering,Ocean Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献