Performance Decay Analysis of a Marine Gas Turbine Propulsion System

Author:

Altosole Marco1,Campora Ugo1,Martelli Michele1,Figari Massimo1

Affiliation:

1. University of Genoa

Abstract

Marine propulsion plants are designed to be more and more efficient to minimize fuel consumption and pollution emissions. However, during the ship operating life, propulsion components and hull are characterized by a certain performance decay, responsible for a worse behavior of the overall propulsion plant. For this reason, the several propulsion components are periodically subjected to expensive maintenance works to restore, as far as possible, their original design characteristics. In the present study, the propulsive performance variation of a naval vessel, powered by a gas turbine as part of an innovative CODLAG system, is simulated and analyzed by means of a detailed and validated numerical code. A sensitivity analysis regarding the influence of the main components deterioration (gas turbine, propellers, and ship hull) on the overall behavior of the propulsion plant is carried out. Several speed profiles of the vessel have been analyzed in terms of the usual performance parameters (ship speed, engine power, and fuel consumption) as well as the pollution emissions of the gas turbine. The main aim of the work is to get useful information for the ship management and maintenance scheduling (condition-based maintenance).

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3