Thermomechanical and Material Flow Analysis during Friction Stir Welding of Marine Grade Aluminum Alloy 5083

Author:

Bhattacharjee Rituraj1,Datta Susmita1,Biswas Pankaj1

Affiliation:

1. Indian Institute of Technology Guwahati, Assam

Abstract

_ This research aims to depict the thermal history, residual stress distribution, axial force applied, and material flow behavior on aluminum alloy 5083 (AA5083) plates, during the friction stir welding (FSW) process. This alloy finds most its use in shipbuilding industries and for marine constructions. It has been developed using an explicit, fully coupled thermomechanical nonlinear finite element (FE) analysis approach. The analysis was performed to simulate the effect of three stages, namely plunging, dwelling, and welding, of the FSW process. The ABAQUS/Explicit program was used for the computational modeling. To build a reliable and computationally efficient FE model, features such as arbitrary Lagrangian-Eulerian (ALE) formulation, adaptive meshing/ remeshing approach, mesh sensitivity analysis, and mass scaling have been introduced. The interaction between the tool bottom surface and the plate top surface was defined using a finite sliding and a sticking property. A Coulomb friction model with a temperature-dependent coefficient of friction (COF) was used to describe the tool-workpiece interaction. In addition, a small experiment was done with the following process parameters; a rotating tool speed of 875 rpm, a traverse speed of 60 mm/min, and a tool tilt angle of 0° to produce a defect-free butt joint to validate the numerically generated thermal profiles. The temperature was found slightly higher on the advancing side (AS). Residual stress distribution created over the whole width of the plates was also investigated. Introduction The introduction of friction stir welding (FSW) process by The Welding Institute in 1991 (Thomas 1991) drew much attention. During fusion welding of 5 mm AA5083 plates, the heat input should be very high. Because of this high input, a higher thermal gradient is produced, which leads to the formation of several intermetallic compounds (IMCs). Because of this IMC formation, the strength of the welded joint is reduced. However, the steep thermal gradient produced leads to the formation of finer microstructure near the weld bead and coarser along the base metal region. These results in the heterogeneity of the weld bead microstructure leading to less efficiency and accuracy of the weldment.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3