Prediction of various defects and material flow behavior during dissimilar FSW of DH36 shipbuilding steel and marine grade AA5083 using FE-based CEL approach

Author:

Bhattacharjee RiturajORCID,Datta Susmita,Hammad Ahmed,Biswas Pankaj

Abstract

Abstract Dissimilar friction stir welding (FSW) of steel-Al is a very tedious job. Inappropriate welding process parameters can lead to the initiation of inevitable defects associated with dissimilar FSW processes. These can be presented as tunnel defects, void generation, excessive flash formation, and other surface irregularities. Using conventional experimental trials makes it usually challenging to identify such defects. This research adopted an Abaqus/Explicit® framework utilizing a 3D thermo-mechanical based coupled Eulerian-Lagrangian (CEL) methodology. In order to predict commonly observed defects in the FSW process, the proposed FEM uses the volume of fluid approach. By monitoring the material flow into and out of the computational/void domain, the suggested framework has made it feasible to predict surface, sub-surface, and volumetric defects. Defect formation is studied at a constant tool rotation speed of 875 rpm, welding speed of 90 mm min−1, and tilt angle of 0°. Tilt angles of 0° caused welding joints with a small tunnel defect. Thermal history, axial force variation, and material flow behavior are all strongly aligned with the principle of defect generation. An experimental trial has been conducted to validate the proposed finite element model. The previous analysis found that the average axial force closely matches the welding-related experimental findings with a percentage error of 7.85%. While a proportion error of approximately ∼0.57% was found between the compared numerical and experimental diameters of the pin end-hole defect. Furthermore, the proposed model accurately predicted the process of material flow along the thickness direction of the workpiece. It was seen that the stress generated at the root of the flashes reached a higher value ranging between 485.6 and 582.7 MPa. Finally, a good agreement between the numerical results and the experimental trial was established, showing the robustness of the developed computational FEM technique.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3