Affiliation:
1. Chungnam National University
2. Korea Research Institute of Ships and Ocean Engineering (KRISO)
Abstract
A potential-based panel method is presented for the analysis of a super-or partially-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces. It is shown that the source plays an important role in positioning the cavity surface through an iterative process. The cavity closure condition is found very effective in generating the cavity shape. Upon convergence, the method predicts the cavitation number together with the lift, drag, and surface pressure distribution for a given cavity length. Systematic convergence tests of the present numerical method show fast and stable characteristics. Good correlations are obtained with existing theories and experimental results for both partially-and supercavitating flows.
Publisher
The Society of Naval Architects and Marine Engineers
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献