Old-forest species: the importance of specific substrata vs. stand continuity in the case of calicioid fungi

Author:

Lõhmus Asko,Lõhmus Piret

Abstract

Appropriate conservation management of old-forest species depends on the causes of their old-forest affinity, which, however, are insufficiently known. Calicioid fungi are often considered old-forest dependent because of their special requirements for microhabitat, microclimate, and stand continuity for at least two tree generations. We demonstrate that, for several methodological or interpretational problems, published studies do not provide unequivocal evidence for such mechanisms and even for old-forest dependency of calicioids in general. We then analyse a large Estonian dataset (ca. 2300 records of 32 species) representing various management types and site types to answer whether old forests have more calicioid species, and any specific species, than could be expected for the substratum availability observed. Although old growth had more species and records than mature managed stands or cutover sites, those substratum types that occurred at roughly similar abundances also hosted comparable numbers of species in different management types. The characteristic substrata adding extra species to old growth were snags and root-plates of treefall mounds; wood surfaces in general comprised more than half of all calicioid records. Although substratum abundance did not fully explain the species-richness contrast between old growth and mature stands, additional evidence suggested that the unexplained variance is rather due to small-scale habitat characteristics than stand-scale continuity or microclimate. Finally, we review the evidence for old-forest affinity of calicioid species and distinguish a set of threatened species. We conclude that the availability of specific substrata is the main limiting factor for calicioid fungi in forests, and its quantitative and stochastic nature explains the large random and region-specific variation in the published lists of ‘old-forest species’.

Publisher

Finnish Society of Forest Science

Subject

Ecological Modelling,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3