Comparative study of the Risutec Automatic Plant Container (APC) and Bracke planting devices

Author:

Laine Tiina,Saarinen Veli-Matti

Abstract

The productivity of mechanized planting could be increased by minimizing the time spent manually reloading seedling cassettes. This study compared the work-time distribution, productivity and quality of the prototype Risutec APC fitted with an automatic feeding system and the commonly-used and manually-loaded Bracke P11.a. An approach of comparative time study was employed that compared performance of two operators using both machines in four sites where slash and stumps had been removed. Operating costs were estimated and compared for these two machines and an idealized machine with automatic feeding system (referred as AUT). AUT was assumed to be similar to the Bracke planting machine with the only difference being in automatic feeding. Productivity of the Risutec APC (196 seedlings per productive work hour [pl PWh]) was lower than that of Bracke (244 pl PWh), making the unit cost 35.7% higher. A large portion (17.6%) of the productive work time of Risutec APC was interrupted by malfunctions, so it cannot be considered robust and reliable yet. Quality of the planting work was reasonable for both machines. The results suggest that an idealized AUT could increase planting capacity (hectares per year [ha yr]) by 15.4% and lower the unit cost (Euro per seedling [€ pl]) by 4.7% compared to today’s machines. The importance of an automated feeding system increases with planting efficiency because relatively more time is spent reloading seedlings. Proper automatic feeding system could offer a cost-effective solution and could enhance productivity, but the Risutec APC has yet to meet the technical and economic standards required to be competitive.0–10–1–1–1

Publisher

Finnish Society of Forest Science

Subject

Ecological Modelling,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3