Author:
Dong Lingbo,Bettinger Pete,Liu Zhaogang,Qin Huiyan,Zhao Yinghui
Abstract
Heuristic techniques have been increasingly used to address the complex forest planning problems over the last few decades. However, heuristics only can provide acceptable solutions to difficult problems, rather than guarantee that the optimal solution will be located. The strategies of neighborhood, hybrid and reversion search processes have been proved to be effective in improving the quality of heuristic results, as suggested recently in the literature. The overall aims of this paper were therefore to systematically evaluate the performances of these enhanced techniques when implemented with a simulated annealing algorithm. Five enhanced techniques were developed using different strategies for generating candidate solutions. These were then compared to the conventional search strategy that employed 1-opt moves (Strategy 1) alone. The five search strategies are classified into three categories: i) neighborhood search techniques that only used the change version of 2-opt moves (Strategy 2); ii) -hybrid search techniques that oscillate between 1-opt moves and the change version of 2-opt moves (Strategy 3), or the exchange version of 2-opt moves (Strategy 4); iii) reversion search techniques that utilize 1-opt moves and the change version of 2-opt moves (Strategy 5) or the exchange version of 2-opt moves (Strategy 6). We found that the performances of all the enhanced search techniques of simulated annealing were systematic and often clear better than conventional search strategy, however the required computational time was significantly increased. For a minimization planning problem, Strategy 6 produced the lowest mean objective function values, which were less than 1% of the means developed using conventional search strategy. Although Strategy 6 performed very well, the other search strategies should not be neglected because they also have the potential to produce high-quality solutions.self
Publisher
Finnish Society of Forest Science
Subject
Ecological Modelling,Forestry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献