Partitioning and solving large-scale tactical harvest scheduling problems for industrial plantation forests

Author:

Bellavenutte Pedro1,Chung Woodam2,Diaz-Balteiro Luis1

Affiliation:

1. College of Forestry, Universidad Politécnica de Madrid, José Antonio Novais 10, 28040, Madrid, Spain.

2. Department of Forest Engineering, Resources and Management, Oregon State University, 238 Peavy Hall, Corvallis, OR 97331, USA.

Abstract

Spatially explicit, tactical forest planning is a necessary but challenging task in the management of plantation forests. It involves harvest scheduling and planning for road access and log transportation over time and space. This combinatorial problem can be formulated into the fixed-charge transportation problem (FCTP), in which the sum of fixed and variable costs is minimized while meeting harvest volume requirements and allowing necessary road maintenance and log hauling activities. The problem can be solved using general optimization methods such as mixed-integer linear programming (MILP), but the computational efficiency of the MILP-based approach quickly drops as the size and complexity of the problem increases. We developed a new optimization procedure that partitions the large planning problem into smaller subproblems. We applied a hybrid optimization approach using both MILP and heuristic rules to efficiently solve the large FCTP that otherwise may not be solvable using traditional methods. We applied our approach to an industrial plantation forest in Brazil. Our applications demonstrate the performance of the new optimization procedure and the benefit of solving large forest planning problems that integrate harvest scheduling with road access and transportation.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3