Road network, landing location, and routing optimization for forest smallholders landscapes

Author:

Constantino Miguel F.12ORCID,Mesquita Marta13,Marques Susete34,Tóth Sándor F.5,Borges José G.34

Affiliation:

1. Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de Ciências Universidade de Lisboa Lisbon 1749‐016 Portugal

2. DEIO, Faculdade de Ciências Universidade de Lisboa Lisbon 1749‐016 Portugal

3. ISA Universidade de Lisboa Tapada da Ajuda Lisbon 1349‐017 Portugal

4. Centro de Estudos Florestais and Associate Laboratory TERRA Tapada da Ajuda Lisbon 1349‐017 Portugal

5. School of Environmental and Forest Sciences University of Washington Seattle WA 98195 USA

Abstract

AbstractWe present two mixed integer linear programming (MILP) formulations for a well‐known integrated network, timber landing location, and routing problem that arises in forest management. The models seek to jointly optimize the construction and maintenance schedule of forest road networks with landing site selection and transportation routing for timber production. This problem is, in general, difficult to solve as it contains the so‐called fixed charge network flow problem, which is known to be NP‐hard. One of the proposed MILP formulations considers 3‐index continuous variables to represent timber flows on road segments in each period. The presence of Big‐M constraints leads to weak linear relaxation bounds. Disaggregating flow variables, according to timber origin, results in a novel 4‐index formulation with very tight linear relaxation bounds. Nevertheless, the number of variables increases prohibitively. This research makes use of spatial constraints common to Smallholding Forested Landscapes to develop a solution approach that reduces the number of flow variables in the new 4‐index model. Results from a real‐world case study located in Northwest Portugal show that, with the 4‐index formulation, the proposed solution approach makes it possible to obtain optimal solutions in a short computational time.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3