Gevrey class regularity and stability for the Debye-H¨uckel system in critical Fourier-Besov-Morrey spaces

Author:

Azanzal AchrafORCID,Allalou ChakirORCID,Melliani SaidORCID

Abstract

In this paper, we study the analyticity of mild solutions to the Debye-Huckel system with small initial data in critical Fourier-Besov-Morrey spaces. Specifically, by using the Fourier localization argument, the Littlewood-Paley theory and bilinear-type fixed point theory, we prove that global-in-time mild solutions are Gevrey regular. As a consequence of analyticity, we get time decay of mild solutions in Fourier-BesovMorrey spaces. Finally, we show a blow-up criterion of the local-in-time mild solutions of the Debye-Huckel system.

Publisher

Sociedade Paranaense de Matematica

Subject

General Mathematics

Reference44 articles.

1. Aurazo-Alvarez, L. L., Ferreira, L.C.F.: Global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a framework of Fourier-Besov type. SN Partial Differential Equations and Applications 2, pp.18 (2021) https://doi.org/10.1007/s42985-021-00109-4

2. Azanzal, A., Allalou, C., A., Abbassi,: Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces. J. Nonlinear Funct. Anal. 2021 (2021), Article ID 24.

3. Azanzal, A., Abbassi, A., Allalou, C., Existence of Solutions for the Debye-H¨uckel System with Low Regularity Initial Data in Critical Fourier-Besov-Morrey Spaces. Nonlinear Dynamics and Systems Theory, 21, 367-380 (2021).

4. Azanzal, A., Abbassi, A., Allalou, C.: On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces. International Journal On Optimization and Applications, 1, pp.28 (2021).

5. Azanzal, A., Allalou, C., Melliani, S.: Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces. J Elliptic Parabol Equ (2021). https://doi.org/10.1007/s41808-021-00140-x

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mild solution for the time fractional magneto-hydrodynamics system;Analysis and Mathematical Physics;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3