Author:
Khaider Hassan,Azanzal Achraf,Abderrahmane Raji,Said Melliani
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Azanzal, A., Allalou, C., Melliani, S.: Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier–Besov–Morrey spaces. J. Elliptic Parabol. Equ. 8(1), 23–48 (2022)
2. Azanzal, A., Allalou, C., Abbassi, A.: Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier–Besov–Morrey spaces. J. Nonlinear Funct. Anal. 2021, 24 (2021)
3. Azanzal, A., Allalou, C., Melliani, S.: Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier-Besov spaces. Boletin de la Sociedad Matemática Mexicana 28(3), 74 (2022)
4. Azanzal, A., Allalou, C., Melliani, S.: Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier–Besov–Morrey spaces. Boletim da Sociedade Paranaense de Matemática 41, 1–19 (2023)
5. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Springer Science and Business Media, Berlin (2011)