Author:
Castellví Jordi,Drmota Michael,Noy Marc,Requilé Clément
Abstract
Given $t\ge 2$ and $0\le k\le t$, we prove that the number of labelled $k$-connected chordal graphs with $n$ vertices and tree-width at most $t$ is asymptotically $c n^{-5/2} \gamma^n n!$, as $n\to\infty$, for some constants $c,\gamma >0$ depending on $t$ and $k$. Additionally, we show that the number of $i$-cliques ($2\le i\le t$) in a uniform random $k$-connected chordal graph with tree-width at most $t$ is normally distributed as $n\to\infty$. The asymptotic enumeration of graphs of tree-width at most $t$ is wide open for $t\ge 3$. To the best of our knowledge, this is the first non-trivial class of graphs with bounded tree-width where the asymptotic counting problem is solved. Our starting point is the work of Wormald [Counting Labelled Chordal Graphs, \textit{Graphs and Combinatorics} (1985)], were an algorithm is developed to obtain the exact number of labelled chordal graphs on $n$ vertices..
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chordal graphs with bounded tree-width;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023