Author:
Babiński Sebastian,Grzesik Andrzej
Abstract
In 1959 Erd\H os and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. We investigate a rainbow version of the theorem, in which one considers $k \geq 1$ graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any $k \geq 1$.
Reference20 articles.
1. R. Aharoni, M. DeVos, S.G.H. de la Maza, A. Montejano, R. Šámal, A rainbow version of Mantel's Theorem, Advances in Combinatorics (2020), 12pp.
2. D. Chakarborti, J. Kim, H. Lee, H. Liu, J. Seo, On a rainbow extremal problem for color-critical graphs, arXiv: 2204.02575 (2022).
3. M. DeVos, J. McDonald, A. Montejano, Non-monochromatic triangles in a 2-edge-coloured graph, Electronic Journal of Combinatoris (2019), 3-8.
4. A. Diwan, D. Mubayi, Turán's theorem with colors, preprint, http://www.math.cmu.edu/~mubayi/papers/webturan.pdf, 2007.
5. P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959),
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献