Graphs without a rainbow path of length 3

Author:

Babiński Sebastian,Grzesik Andrzej

Abstract

In 1959 Erd\H os and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. We investigate a rainbow version of the theorem, in which one considers $k \geq 1$ graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any $k \geq 1$.

Publisher

Masaryk University Press

Reference20 articles.

1. R. Aharoni, M. DeVos, S.G.H. de la Maza, A. Montejano, R. Šámal, A rainbow version of Mantel's Theorem, Advances in Combinatorics (2020), 12pp.

2. D. Chakarborti, J. Kim, H. Lee, H. Liu, J. Seo, On a rainbow extremal problem for color-critical graphs, arXiv: 2204.02575 (2022).

3. M. DeVos, J. McDonald, A. Montejano, Non-monochromatic triangles in a 2-edge-coloured graph, Electronic Journal of Combinatoris (2019), 3-8.

4. A. Diwan, D. Mubayi, Turán's theorem with colors, preprint, http://www.math.cmu.edu/~mubayi/papers/webturan.pdf, 2007.

5. P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959),

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rainbow Variations on a Theme by Mantel: Extremal Problems for Gallai Colouring Templates;Combinatorica;2024-04-29

2. Directed graphs without rainbow triangles;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3