Directed graphs without rainbow triangles

Author:

Babiński Sebastian,Grzesik Andrzej,Prorok Magdalena

Abstract

One of the most fundamental questions in graph theory is Mantel's theorem which determines the maximum number of edges in a triangle-free graph of a given order. Recently a colorful variant of this problem has been solved. In such a variant we consider $c$ graphs on a common vertex set, thinking of each graph as edges in a~distinct color, and want to determine the smallest number of edges in each color which guarantees the existence of a rainbow triangle. Here, we solve the analogous problem for directed graphs without rainbow triangles, either directed or transitive, for any number of colors. The constructions and proofs essentially differ for $c=3$ and $c \geq 4$ and the type of the forbidden triangle.

Publisher

Masaryk University Press

Reference31 articles.

1. R. Aharoni, M. DeVos, S. González, A. Montejano, R. Šámal, A rainbow version of Mantel's Theorem, Advances in Combinatorics (2020), 12043.

2. S. Babiński, A. Grzesik, Graphs without a rainbow path of length 3, arXiv: 2211.02308 (2022).

3. D. Chakarborti, J. Kim, H. Lee, H. Liu, J. Seo, On a rainbow extremal problem for color-critical graphs, arXiv: 2204.02575 (2022).

4. A. Diwan, D. Mubayi, Turán's theorem with colors, preprint, http://www.math.cmu.edu/~mubayi/papers/webturan.pdf, 2007.

5. V. Falgas-Ravry, K. Markström, E. Räty, Rainbow variations on a theme by Mantel: extremal problems for Gallai colouring templates, arXiv: 2212.07180 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3