Derin Öğrenme Yöntemleri Kullanılarak BT Taramalarında Beyin Kanaması Teşhisinin Karşılaştırmalı Bir Analizi

Author:

GENÇTÜRK Tuğrul Hakan1,KAYA GÜLAĞIZ Fidan1,KAYA İsmail2ORCID

Affiliation:

1. KOCAELİ ÜNİVERSİTESİ

2. NİĞDE ÖMER HALİSDEMİR ÜNİVERSİTESİ

Abstract

Teknolojinin gelişmesiyle birlikte yapay zekâ temelli uygulamalar pek çok alanda destek amaçlı kullanılmaktadır. Sağlık sektörü de bu tür uygulamaların yaygın kullanıldığı alanlardan bir tanesidir. Sağlık sektöründe teknolojik gelişime bağlı olarak meydana gelen bilgi artışı beraberinde radyolojik değerlendirmede uzmanlık gereğini doğurmuştur. Yoğun çalışma saatleri, sağlık kurumlarında her branştan uzmana ulaşılamaması ve özellikle acil patolojilerde erken teşhisin önemi göz önünde bulundurulduğunda hekimlere teşhis sürecinde destek olacak uygulamalara olan ihtiyacın önemi anlaşılmaktadır. Çalışma kapsamında Bilgisayarlı Tomografi (BT) görüntüleri kullanılarak beyin kanamalarının tespitini gerçekleştirmek amacıyla güncel derin öğrenme yöntemlerinden Görsel Geometri Grubu (VGG), Artık Sinir Ağı (ResNet) ve EfficientNet mimarileri yine güncel bir veri kümesi olan PhysioNet’e uygulanmıştır. Modeller doğruluk, kesinlik, hassasiyet ve F1 skor metrikleri kullanılarak hem kendi aralarında hem de literatürdeki çalışmalarla karşılaştırılmıştır. Gerçekleştirilen çalışma ile veri kümesine uygun model seçiminin önemi güncel modeller üzerinden ortaya konulmuştur. EfficientNet-B2 modelinin başarısı hem literatürdeki çalışmalardan hem de makale kapsamında değerlendirilen modellerden yüksek olmuştur. Elde edilen sonuçlar güncel derin öğrenme modellerinin, beyin kanaması teşhisine yardımcı olabilecek potansiyelde olduğunu göstermiştir. Çalışma acil servislerin yükünü çeken pratisyen hekimleri en azından beyin kanamasının varlığı konusunda uyarıp kanama durumunun gözden kaçmamasını sağlaması ve erken teşhisi açısından önem arz etmektedir.

Publisher

Journal of Intelligent Systems: Theory and Applications, Harun TASKIN

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3