Detecting Coronary Artery Disease from Computed Tomography Images Using a Deep Learning Technique

Author:

AlOthman Abdulaziz Fahad,Sait Abdul Rahaman WahabORCID,Alhussain Thamer Abdullah

Abstract

In recent times, coronary artery disease (CAD) has become one of the leading causes of morbidity and mortality across the globe. Diagnosing the presence and severity of CAD in individuals is essential for choosing the best course of treatment. Presently, computed tomography (CT) provides high spatial resolution images of the heart and coronary arteries in a short period. On the other hand, there are many challenges in analyzing cardiac CT scans for signs of CAD. Research studies apply machine learning (ML) for high accuracy and consistent performance to overcome the limitations. It allows excellent visualization of the coronary arteries with high spatial resolution. Convolutional neural networks (CNN) are widely applied in medical image processing to identify diseases. However, there is a demand for efficient feature extraction to enhance the performance of ML techniques. The feature extraction process is one of the factors in improving ML techniques’ efficiency. Thus, the study intends to develop a method to detect CAD from CT angiography images. It proposes a feature extraction method and a CNN model for detecting the CAD in minimum time with optimal accuracy. Two datasets are utilized to evaluate the performance of the proposed model. The present work is unique in applying a feature extraction model with CNN for CAD detection. The experimental analysis shows that the proposed method achieves 99.2% and 98.73% prediction accuracy, with F1 scores of 98.95 and 98.82 for benchmark datasets. In addition, the outcome suggests that the proposed CNN model achieves the area under the receiver operating characteristic and precision-recall curve of 0.92 and 0.96, 0.91 and 0.90 for datasets 1 and 2, respectively. The findings highlight that the performance of the proposed feature extraction and CNN model is superior to the existing models.

Funder

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT843]

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference40 articles.

1. Feasibility of using deep learning to detect coronary artery disease based on facial photo;Lin;Eur. Heart J.,2020

2. Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study

3. Characterization of coronary artery pathological formations from OCT imaging using deep learning

4. Image Dataset for a CNN Algorithm Development to Detect Coronary Atherosclerosis in Coronary CT Angiography. Mendeley Data, V1 https://data.mendeley.com/datasets/fk6rys63h9/1

5. Deep learning-based stenosis quantification from coronary CT angiography;Hong;Proc. SPIE Int. Soc. Opt. Eng.,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3