Affiliation:
1. BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
Abstract
Heart diseases are common worldwide and cause one-third of global deaths. The difficulty in distinguishing the symptoms of heart disease and the fact that most heart patients are not aware of the symptoms until the moment of crisis make the diagnosis of the disease difficult. Machine learning, an artificial intelligence discipline, provides experts with successful decision support solutions in diagnosing new cases based on known data. In this study, classifications were made using various machine learning techniques for the early diagnosis of heart diseases. The study was carried out on the UCI heart disease dataset, which is widely used in the literature. In order to increase the classification success, resampling techniques were used to ensure the class balance of the dataset. For each of 8 different machine learning techniques, namely Naive Bayes, Decision Trees, Support Vector Machine, K Nearest Neighbor, Logistic Regression, Random Forest, AdaBoost, and CatBoost, in addition to no-sampling classification, 8 different methods from oversampling and undersampling techniques were used to make a total of 72 classification processes were carried out. The result of each classification process is reported with 5 different parameters: accuracy, precision, recall, F1 score, and AUC. The highest accuracy value was obtained as 98.46% in the classification using Random Forest and InstanceHardnessThreshold undersampling technique. It was observed that the measurements obtained were higher than the results obtained in similar studies conducted in the literature in recent years.
Publisher
Journal of Intelligent Systems: Theory and Applications, Harun TASKIN
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献