Comparative Analysis of Machine Learning Models for Android Malware Detection

Author:

Bulut Selma1ORCID,Korkmaz Adem2ORCID

Affiliation:

1. KIRKLARELI UNIVERSITY, TECHNICAL SCIENCES VOCATIONAL SCHOOL

2. BANDIRMA ONYEDI EYLUL UNIVERSITY, GÖNEN VOCATIONAL SCHOOL

Abstract

The rapid growth of Android devices has led to increased security concerns, especially from malicious software. This study extensively compares machine-learning algorithms for effective Android malware detection. Traditional models, such as random forest (RF) and support vector machines (SVM), alongside advanced approaches, such as convolutional neural networks (CNN) and XGBoost, were evaluated. Leveraging the NATICUSdroid dataset containing 29,332 records and 86 traces, the results highlight the superiority of RF with 97.1% and XGBoost with 97.2% accuracy. However, evolving malware and real-world unpredictability require a cautious interpretation. Promising as they are, our findings stress the need for continuous innovation in malware detection to ensure robust Android user security and data integrity.

Publisher

Sakarya University Journal of Science

Reference49 articles.

1. [1] A. Turner. (2022, Jan 12). How many Android users are there? Global statistics. [Online]. Available: https://www.bankmycell.com/blog/how-many-android-users-are-there

2. [2] Google. (2023, Aug 26). Wear OS by Google. [Online]. Available: https://wearos.google.com

3. [3] Android. (2023, Aug 25). Android TV. [Online]. Available: https://www.android.com/tv/

4. [4] S. Büyükgöze, “Mobil uygulama marketlerinin güvenlik modeli incelemeleri,” Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 12(1), pp.9-18. 2019.

5. [5] A. Kivva, (2023, Jun 07). IT threat evolution Q1 2023. Mobile statistics. [Online]. Available: https://securelist.com/it-threat-evolution-q1-2023-mobile-statistics/109893/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3