Bacterial Disease Detection of Cherry Plant Using Deep Features

Author:

Dönmez Emrah1ORCID,Ünal Yavuz2ORCID,Kayhan Hatice2ORCID

Affiliation:

1. BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ

2. AMASYA UNIVERSITY

Abstract

Although the cherry plant is widely grown in the world and Turkey, it is a fruit tree that is difficult to grow and maintain. It can be exposed to various pesticide diseases, especially during fruiting. Today, approaches based on expert reviews and analyses are used for the identification of these diseases. In addition, cherry producers are trying to detect diseases with their knowledge based on experience. Computer-aided agricultural analysis systems are also being developed depending on the rapid developments in technology. These systems help to monitor all processes from planting, cultivation, and harvesting of agricultural products and to make decisions to grow the products healthily. One of the most important issues to be detected and monitored with these systems is plant diseases. The features of the cherry plant disease will be determined by using a pre-trained convolutional neural network (CNN) model which is DarkNet-19, within the scope of this study. These machine learning-based features have been used for the detection of bacteria-based diseases commonly seen on the leaves of cherry plants. The acquired features are classified with Linear Discriminant Analysis, K-Nearest Neighbor, and Support Vector Machine classifiers to solve the multi-class problem including diseased (less and very) and healthy plants. The experimental results show that a success rate of 88.1% was obtained in the detection of the disease.

Publisher

Sakarya University Journal of Computer and Information Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3