Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions

Author:

Taye Mohammad Mustafa1ORCID

Affiliation:

1. Data Science and Artificial Intelligence, Philadelphia University, Amman 19392, Jordan

Abstract

In recent years, deep learning (DL) has been the most popular computational approach in the field of machine learning (ML), achieving exceptional results on a variety of complex cognitive tasks, matching or even surpassing human performance. Deep learning technology, which grew out of artificial neural networks (ANN), has become a big deal in computing because it can learn from data. The ability to learn enormous volumes of data is one of the benefits of deep learning. In the past few years, the field of deep learning has grown quickly, and it has been used successfully in a wide range of traditional fields. In numerous disciplines, including cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, deep learning has outperformed well-known machine learning approaches. In order to provide a more ideal starting point from which to create a comprehensive understanding of deep learning, also, this article aims to provide a more detailed overview of the most significant facets of deep learning, including the most current developments in the field. Moreover, this paper discusses the significance of deep learning and the various deep learning techniques and networks. Additionally, it provides an overview of real-world application areas where deep learning techniques can be utilised. We conclude by identifying possible characteristics for future generations of deep learning modelling and providing research suggestions. On the same hand, this article intends to provide a comprehensive overview of deep learning modelling that can serve as a resource for academics and industry people alike. Lastly, we provide additional issues and recommended solutions to assist researchers in comprehending the existing research gaps. Various approaches, deep learning architectures, strategies, and applications are discussed in this work.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference87 articles.

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3