Comparison of artificial neural networks learning methods to evaluate supply chain performance

Author:

Lunardi Antonio Ricardo1ORCID,Lima Junior Francisco Rodrigues1ORCID

Affiliation:

1. Universidade Tecnológica Federal do Paraná, Brasil

Abstract

Abstract: The supply chain performance evaluation is a critical activity to continuously improve operations. Literature presents several performance evaluation systems based on multi-criteria methods and artificial intelligence. Among them, the systems based on artificial neural networks (ANN) excel due to their capacity of modeling non-linear relationships between metrics and allowing adaptations to a specific environment by means of historical performance data. These systems’ accuracy depend directly on the adopted training algorithm, and no studies have been found that assess the efficiency of these algorithms when applied to supply chain performance evaluation. In this context, the present study evaluates four ANNs learning methods in order to investigate which one is the most adequate to deal with supply chain evaluation. The algorithms tested were Gradient Descendent Momentum, Levenberg-Marquardt, Quasi-Newton and Scale Conjugate Gradient. The performance metrics were extracted from SCOR®, which is a reference model used worldwide. The random sub-sampling cross-validation method was adopted to find the most adequate topological configuration for each model. A set of 80 topologies was implemented using MATLAB®. The prediction accuracy evaluation was based on the mean square error. For the four level 1 metrics considered, the Levenberg-Marquardt algorithm provided the most precise results. The results of correlation analysis and hypothesis tests reinforce the accuracy of the proposed models. Furthermore, the proposed computational models reached a prediction accuracy higher than previous approaches.

Publisher

FapUNIFESP (SciELO)

Subject

Industrial and Manufacturing Engineering,Business and International Management

Reference39 articles.

1. Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN;Abdi-Khanghah M.;Journal of CO2 Utilization,2018

2. Assessing sustainability in the supply chain: A triple bottom line approach;Ahi P.;Applied Mathematical Modelling,2015

3. Fuzzy QFD approach for managing SCOR performance indicators;Akkawuttiwanich P.;Computers & Industrial Engineering,2018

4. Operations management research methodologies using quantitative modeling;Bertrand J. W. M.;International Journal of Operations & Production Management,2002

5. Comparison of ANFIS and NN models – With a study in critical buckling load estimation;Bilgehan M.;Applied Soft Computing,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3