Accelerate demand forecasting by hybridizing CatBoost with the dingo optimization algorithm to support supply chain conceptual framework precisely

Author:

Abed Ahmed M.

Abstract

Supply chains (SCs) serve many sectors that are, in turn, affected by e-commerce which rely on the make-to-order (MTO) system to avoid a risk in following the make-to-stoke (MTS) policy due to poor forecasting demand, which will be difficult if the products have short shelf life (e.g., refrigeration foodstuffs). The weak forecasting negatively impacts SC sectors such as production, inventory tracking, circular economy, market demands, transportation and distribution, and procurement. The forecasting obstacles are in e-commerce data types that are massive, imbalanced, and chaotic. Using machine learning (ML) algorithms to solve the problem works well because they quickly classify things, which makes accurate forecasting possible. However, it was found that the accuracy of ML algorithms varies depending on the SC data sectors. Therefore, the presented conceptual framework discusses the relations among ML algorithms, the most related sectors, and the effective scope of tackling their data, which enables the companies to guarantee continuity and competitiveness by reducing shortages and return costs. The data supplied show the e-commerce sales that were made at 47 different online stores in Egypt and the KSA during 413 days. The article proposes a novel mechanism that hybridizes the CatBoost algorithm with Dingo Optimization (Cat-DO), to obtain precise forecasting. The Cat-DO has been compared with other six ML algorithms to check its superiority over autoregressive integrated moving average (ARIMA), long short-term memory (LSTM), deep neural network (DNN), categorical data boost (CatBoost), support vector machine (SVM), and LSTM-CatBoost by 0.52, 0.73, 1.43, 8.27, 15.94, and 13.12%, respectively. Transportation costs were reduced by 6.67%.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3