Improvement of the classification of green asparagus using a Computer Vision System

Author:

Salazar-Campos Orlando1ORCID,Salazar-Campos Johonathan2ORCID,Menacho Danny2,Morales Diego2,Aredo Victor3ORCID

Affiliation:

1. Universidad Privada del Norte, Perú

2. Universidad Nacional de Trujillo, Perú

3. Universidade de São Paulo, Brasil

Abstract

Abstract The aim of this work was to improve the classification of green asparagus in an agro-export company by way of a Computer Vision System (CVS). Thus, an image analysis application was developed in the MATLAB® environment to classify green asparagus according to the absence of white spots and the width of the product. The CVS performance was compared with a manual classification using the error in the classification as the quality indicator; the yield from the raw material (%) and line productivity (kg/h) as the production indicators; and the net present value (USD) and internal rate of return (%) as the economic indicators. The CVS classified the green asparagus with 2% error; improved the yield from the raw material from 43% to 45%, and line productivity from 5 to 10 kg/h; and increased the net present value by 102,609.00 USD, yielding an Internal Rate of Return of 156.3%, much higher than the Opportunity Cost of the Capital (8.6%). Hence the classification of green asparagus by a CVS is an efficient and profitable alternative to manual classification.

Publisher

FapUNIFESP (SciELO)

Subject

Food Science

Reference14 articles.

1. Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry;Arakeri M. P.;Procedia Computer Science,2016

2. Classification of processing asparagus sections using color images;Donis-González I. R.;Computers and Electronics in Agriculture,2016

3. Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing;Ercisli S.;Scientia Horticulturae,2012

4. Visión artificial aplicada al control de la calidad;Fuentes J. G.;3C Tecnología,2014

5. Storage of fresh asparagus;Lill R. E.;New Zealand Journal of Experimental Agriculture,1980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3